Enrollment		Exam Seat No:					
C. U. SHAH UNIVERSITY Winter Examination-2019							
Subject Nan	ne: Electrical Machine – I						
Subject Code: 4TE03EMC1		Branch: B.Tech (Electrical)					
Semester : 3	Date: 22/11/2019	Time: 02:30 To 05:30	Marks: 70				
(2) Instr (3) Dray	of Programmable calculator & any ructions written on main answer bown neat diagrams and figures (if necume suitable data if needed.	ook are strictly to be obeyed.	rohibited.				
Q-1	Attempt the following question	s:	(14)				
a)	A Step up transformer increases (A) Voltage (B) Current (C) Power						
b)	 (D) Frequency Lap winding is suitable for d.c.generators. (A) High, low (B) Low, high (C) Low, low (D) High, high 	Current,	.voltage				
	The critical resistance of the d.c. (A) Armature (B) Field (C) Load (D) brushes						
d)	D.C. shunt motors are used for d (A) trains (B)cranes (C)hoists (D)machine tools	riving					
e)	Power transformers are designed (A) nearly full load (B) 70% full load (C) 50% full load (D) no load	to have maximum efficiency at					

(A) stator

f) In a 3-phase induction motor, the rotor field rotates at synchronous speed with respect to

		(C) stator flux	
		(D) none of the above	
	g)	Slip rings are usually made of	
	5)	(A) copper	
		(B) carbon	
		(C) phosphor bronze	
	1.1	(D) aluminum	
	h)	The field coils of D.C. generator are usually made of	
		(A) mica	
		(B) copper	
		(C) cast iron	
		(D) carbon	
	i)	Define the term: voltage regulation	
	•	What is the function of compensating winding?	
	k)	How may the direction of rotation of a d.c. motor be reversed?	
	1)	Define the term: All day efficiency	
	m)	Explain the function of armature winding.	
	n)	Explain the function of commutator.	
Atten	npt any	four questions from Q-2 to Q-8	
Q-2		Attempt all questions	(14)
	(a)	Derive the E.M.F equation for Simplex lap and wave wound generator.	(07)
	(b)	Explain in detail armature reaction in dc machines.	(07)
Q-3		Attempt all questions	(14)
	(a)	What is need of starter? Explain the construction and working of three	(07)
		point starter.	
	(b)	Derive the torque equation of motor and also explain the armature and	(07)
		shaft torque.	
Q-4		Attempt all questions	(14)
	(a)	Explain the Swinburne test of D.C .Motor.	(07)
	(b)	A short-shunt compound generator delivers a load current of 30A at	(07)
		220V, and has armature, series-field and shunt-field resistances of 0.05	
		Ω , 0.30 Ω and 200 Ω respectively. Calculate the induced e.m.f. and the	
		armature current. Allow 1.0 V per brush for contact drop.	
Q-5		Attempt all questions	(14)
Ų	(a)	Derive the EMF equation for single phase transformer with help of	(07)
	(4)	sketch.	(07)
	(b)	Explain different types of D.C. generator.	(07)
	(D)	Explain different types of D.C. generator.	(07)
Q-6		Attempt all questions	(14)
Q-0	(a)	Explain the Equivalent circuit of Transformer.	
	(a)		(07)
0.7	(b)	Explain the Speed control of D.C. Shunt Motor.	(07) (14)
Q-7	(a)	Attempt all questions Define the term "glin" of induction mater. Draw and Evaluin the torque	(14) (07)
	(a)	Define the term "slip" of induction motor. Draw and Explain the torque-	(07)
		slip characteristics of a three phase induction motor.	

(B) rotor

	(b)	A 30kVA, 2400/120 V, 50 Hz transformer has a high voltage winding resistance of 0.1 Ω and a leakage reactance of 0.22 Ω . The low voltage winding resistance is 0.035 Ω and the leakage reactance is 0.012 Ω . Find the equivalent winding resistance, reactance and impedance referred to the (i) high voltage side and (ii) the low voltage side.	(07)
Q-8	(a)	Attempt all questions Explain the Production of Rotating field of 3 Phase Supply for Induction	(14) (07)
	()	Motor.	(-)
	(b)	Explain the need of Parallel operation of Transformer. What are the	(07)
		Conditions for parallel operation of Transformers?	

